

1417AA

1

ArmaGrid – UX_{PET}

COATED POLYESTER UNIAXIAL GEOGRIDS

THIN IS NOT

ArmaGrid – UX PET

ArmaGrid – UX_{PET} is a knitted polyester Geogrid providing tensile reinforcement capacity in one direction. ArmaGrid – UX_{PET} is best suited for demanding soil reinforcement applications.

Applications

- Steep Slopes: Used as soil reinforcement for reinforced soil steep slopes and embankments.
- Basal Reinforcement: ArmaGrid UX_{PET} improves the stability of soft sub-soils by interacting with engineered fill and providing a strong mattress foundation for embankments and platforms.
- Foundation Improvement: ArmaGrid UX_{PET} is used to support shallow structural foundations, by improving stability, enhancing load distribution and reducing differential settlement.

Properties	Test Method	Units	AG-UX _{PET} 40	AG-UX _{PET} 60	AG-UX _{PET} 80	AG-UX _{PET} 100	AG-UX _{PET} 120	AG-UX _{PET} 150	AG-UX _{PET} 180	AG-UX _{PET} 200	AG-UX _{PET} 250	AG-UX _{PET} 300
						Minimun	n Average	Roll Valu	e (MARV)			
Physical Properties												
Material							Poly	ester				
Mechanical Properties												
Ultimate Tensile Strength in Machine Direction		kN/m	40	60	80	100	120	150	180	200	250	300
UltimateTensile Strength in Cross Machine Direction	ASTM D	kN/m	20	20	30	30	30	30	30	30	30	30
Elongation at Designated Strength (±2%)	00370	%	10	10	10	10	10	10	10	11	11	11
Tensile Strength at 5% Strain (±5%)			20	30	40	50	60	75	81	90	100	120
Tensile Strength at 5% Strain (±5%) Creep Reduction Factor (114 Years Design Life)	ASTM D 6637A	at 20°C	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39
(114 Years Design Life)		at 30°C	1.44	1.44	1.44	1.44	1.44	1.44	1.44	1.44	1.44	1.44
		Particle size < 10mm (Silty Sand)	1.10	1.10	1.02	1.02	1.02	1.06	1.06	1.06	1.06	1.06
Partial Factor - Installation Damage	ASTM D 5818	Particle size < 19mm (Gravely Sand)	1.12	1.12	1.06	1.06	1.04	1.10	UX _{PET} AG-UX _{PET} AG <ux< th=""> AG<ux< th=""> AG</ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<></ux<>	1.10	1.10	
		Particle size < 75mm (Sandy Gravel)	1.19	1.19	1.16	1.16	1.11	1.11	1.11	1.11	1.11	1.11
Partial Factor - Environmental Effects	GRI-GG7, GRI-GG8 Environment	4 < pH < 9	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Standard Packaging												
Roll Width"		m	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
Roll Length"		m	100	100	100	100	100	100	100	100	100	100
Roll Area"		m ²	380	380	380	380	380	380	380	380	380	380
Weight Per Roll ⁱⁱⁱ		kg	90.5	112.9	138.4	157.8	182.1	199.2	232.6	246.7	287	315

Technical Parameters

ⁱ All the values mentioned are of minimum average roll values (MARV).

These values are subject to ±1% variation

" Other roll sizes available

NOTES

A. All prescribed values are minimum unless otherwise mentioned and tested in GAI-LAP accredited laboratories.

- B. These properties may change at the time of handling, storage and shipping.
- C. Roll weights are average values including shipping cores. Actual roll weight may vary. D. Customized rolls with varying lengths or master rolls can be manufactured.
- E. The above values are subject to change as per discretion of the company.

www.terre-armee.com

Local Contact: .

Disclaimer. Neither this brochure/leaflet nor its text, illustrations, drawings or any part thereof, may be reproduced, stored in a retrieval system, photocopied, recorded or transmitted in any form, whether electronic or otherwise, without the consent of Terre Armée. Descriptions and some illustrations contained in this catalogue are from computer generated imagery and actual product may differ wholly or partially. The images are only for static representation of the actual product. Terre Armée Management cannot be held liable for any inaccuracies of description or illustration and reserve the right to change specifications without notification.

Basal Reinforcement

ArmaGrid – BX_{PET}

COATED POLYESTER BIAXIAL GEOGRIDS

Sub-grade Stabilisation

ArmaGrid – BX_{PET}

ArmaGrid – BX_{PET} is a high strength and low strain biaxial knitted geogrid manufactured with high tenacity polyester yarns.

Applications

 Subgrade and Subbase Stabilisation: Improvement of sub-grade and sub-base performance in roads, railways and airport runways, taxiways and aprons by incorporating the ArmaGrid – BX_{PET} within appropriate interlayers.

Technical Parameters

Properties		Test Methods	Units	AG-BX _{PET} 30	AG-BX _{PET} 40	AG-BX _{PET} 60	AG-BX _{PET} 80	AG-BX _{PET} 100		
Physical Properties										
Material				Polyester						
Aperture Size in MD ^{i,iv}			mm	24	24	17	20	30		
Aperture Size in CD ^{i,iv}			mm	23	21	21	20	30		
Mechanical Pro	operties									
Nominal Tensile	Strength MD [™]		kN/m	30	40	60	80	100		
Nominal Tensile	Strength CD ^{iv}	ASTIVI D 6637	kN/m	30	40	60	80	100		
Partial Reduction Factor - Creep ^{iv}	±2%	ASTM D 6637		1.41	1.41	1.41	1.41	1.41		
Partial Reduction Factor - Installation Damage			Particle size D _{max} < 5mm (Silty Sand)	1.10	1.10	1.10	1.02	1.02		
		ASTM D 5818	Particle size D _{max} < 35mm (Gravely Sand)	1.12	1.12	1.12	1.06	1.06		
			Particle size D _{max} < 75mm (Sandy Gravel)	1.19	1.19	1.19	1.16	1.16		
Partial Reduction Factor - Environmental Effects ^v			4 < pH < 9	1.11	1.11	1.11	1.11	1.11		
Standard Packaging"										
Roll Dimensions (width) ⁱⁱ			m	3.8/5.0	3.8/5.0	3.8/5.0	3.8/5.0	3.8/5.0		
Roll Dimensions (length) ⁱⁱ			m	100	100	100	100	100		
Roll Area ⁱⁱⁱ			m ²	380/500	380/500	380/500	380/500	380/500		
Weight per Roll [#]			kg	104/137	98/128	130/171	231/304	245/323		

i. Tolerance ±1mm

ii. These values are indicative and subject to variations.

iii. Other roll sizes available

iv. MD- Machine Direction, CD- Cross Machine Direction

 The creep and durability reduction factor given is applicable for 20°C temperature and 114 years. Reduction factors for other temperatures are available upon request.

NOTES

A. All prescribed values are minimum unless otherwise mentioned and tested in GAI-LAP accredited laboratories.

B. Roll weights are average values including shipping cores. Actual roll weight may vary.

C. Customized rolls with varying lengths or master rolls can be manufactured. D. The above values are subject to change as per discretion of the company.

www.terre-armee.com

Local Contact:

Disclaimer. Terre Armée assumes no liability for the accuracy and completeness of this information or for the ultimate use by the purchaser. Terre Armée disclaims any and all express, implied, or statutory standard, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, material, or information furnished herewith. This document should not be constructed as engineering advise. ArmaGrid[™] is a registered trademark of Terre Armée

Copyright © 2021. All Rights reserved

I TTT

Embankment on Soft Soil

ArmaGrid – UX_{PP}

The the

INTEGRAL POLYPROPYLENE UNIAXIAL GEOGRIDS

Temporary Reinforced Slope

ArmaGrid – UX_{PP}

Uniaxial PP ArmaGrid is made of polypropylene, by the process of stretching of high quality punched sheet in one direction under strictly controlled conditions. ArmaGrid – UX_{PP} has consistent high performance properties including high tensile strength up to 300KN/m and high modulus, ageing resistance, chemical and biological durability. These products are used where high strength is required for a relatively short period, for example during the consolidation of embankment foundations.

Applications

- Foundation Treatment: ArmaGrid UX_{PP} with their high tensile strength and optimum interlock characteristics, combined with compacted granular fill, with its high compressive strength, provide an integrated load-bearing platform on soft ground.
- Embankment on Soft Soil: Often considerable consolidation takes place in the soft soil before it develops adequate bearing capacity during the construction of high embankments. The conventional process is to build the embankment in stages so that the embankment height is only increased as the ground develops sufficient strength to support the embankment, without risk of global stability failures. Under these conditions, construction time can be significantly shortened by using High Strength Uniaxial PP TA Grids to reinforce the base of the embankment. ArmaGrid UX_{PP} are useful for strengthening of soft soil for dam construction, land reclamation project and alike.
- Temporary Reinforced Slope: ArmaGrid UX_{PP} can be used to build reinforced steep slopes required for relatively short service life periods (typically, less than 5 years), in which the long term design strength of soil reinforcement is ignored in design. Such applications are necessary for construction of temporary elevated diversions, protective bunds, steep slopes and overpass embankments and for short term construction needs like for flyovers, interchanges, bridging and underpass solutions where space constraints and site encumbrances prevent permanent works at early construction stages.

Technical Parameters

Properties	Test Method	Unit	AG-UX _{pp} 120B	AG-UX _{pp} 160B	AG-UX _{pp} 200B	AG-UX _{pp} 260B	AG-UX _{pp} 300B			
Physical Properties										
Material			Polypropylene							
Atd ⁱ		mm	19	19	19	19	19			
Bw ⁱ		mm	19	19	19	19	19			
Sw ⁱ		mm	5.5	5.5	5.5	5.5	5.5			
Tb ⁱ		mm	4	5	6.2	6.8	6.9			
Tr ⁱ		mm	1.4	1.7	2.1	2.6	2.8			
Pnom ⁱ		mm	450	450	450	450	450			
Mechanical Properties										
			Minimum Average Roll Value (MARV)"							
Ultimate Tensile Strength	ASTM D6637 B	kN/m	120	160	200	260	300			
Tensile Strength 2% Strain ^{iv}	ASTM D6637 B	kN/m	45	60	80	100	110			
Tensile Strength 5% Strain	ASTM D6637 B	kN/m	90	120	150	200	220			
Typical Stain at Peak Load		%	8	8	8	8	8			
Standard Packaging										
Roll Width ^v		m	3	3	3	3	3			
Roll Length ^v		m	50	50	50	50	50			
Standard Roll Area ⁱⁱⁱ		m²	150	150	150	150	150			

ⁱ Refer to figure 1

" Values shown are minimum average

roll values

ⁱⁱⁱ Other roll option available
^{iv} At 2% strain under 3600 radial loading.

Determined from tests in accordance

with ISO 10319.

These values are subject to

±1% variation

NOTES

A. These properties may change at the time of handling, storage and shipping. B. Other grades and polyester material also available as per requirement C. The values can be customized.

D. The above values are subject to change as per discretion of the company

E. All Strength and Load figures are based on test results from the manufacturer's laboratory in accordance with ISO 10319 at the temperature of 21±1°C and calculated as a lower 95% Confidence limit in accordance with ISO 2602.
F. Carbon Black content ≥ 0.5%.

G. Measured by comparing the results of tests in accordance with test methods GRI/GG2 and GRI/GG1.

www.terre-armee.com

Local Contact:

Disclaimer: Neither this brochure /leaflet nor its text, illustrations, drawings or any part thereof, may be reproduced, stored in a retrieval system, photocopied, recorded or transmitted in any form, whether electronic or otherwise, without the consent of Terre Armée. Descriptions and some illustrations contained in this catalogue are from computer generated imagery and actual product may differ wholly or partially. The images are only for static representation of the actual product. Terre Armée Management cannot be held liable for any inaccuracies of description or illustration and reserve the right to change specifications without notification.

ArmaGrid – BX_{PP}

INTEGRAL POLYPROPYLENE BIAXIAL GEOGRIDS

Track Bed Stabilisation

ArmaGrid – BX

ArmaGrid – BX_{pp} is a biaxial geogrid made from polypropylene by accurate punching, and then stretching in two directions under strictly controlled conditions with a continuous orientation through the nodes. ArmaGrid – BX_{PP} is inert to chemicals, including acids, alkalis and salts, normally found in soils. ArmaGrid – BX_{PP} does not suffer any attack by microorganisms in soil.

Applications

- Railways: Enhancing the ballast performance in railways and stabilisation of track foundation layers with reduced ballast degradation and settlement.
- Roadways: Subbase and sub-grade improvement by reinforcement and stabilisation; and increase in durability of flexible pavement and unpaved roads.
- Airport Runways and Taxiways: Subbase and sub-grade improvement for the runway and taxiway pavements of airfield.
- Ports: Sub-grade reinforcement and load distribution for container yards, under warehouse or similar load carrying platforms.

Technical Parameters

Properties		Test Method	Unit	AG-BX _{pp} 1616	AG-BX _{pp} 2020	AG-BX _{pp} 3030	AG-BX _{pp} 4040	AG-BX _{pp} 2020L	AG-BX _{pp} 3030L	AG-BX _{pp} 4040L
Physical Properties										
Material				Polypropylene						
Pitch Size	Pmd ^{vi}		mm	40	40	40	38	66	66	61
Pitch Size	Ptd ^{vi}		mm	40	40	40	38	66	66	61
Rib Width	Wmd ^{vi}		mm	2.3	2.3	2.4	2.6	4.4	4.4	4.7
Rib Width	Wtd ^{vi}		mm	3.1	3.1	3.7	4.5	5.5	5.6	6.1
Rib Depth	Tmd ^{vi}		mm	1.2	1.3	2.4	2.8	1.4	2	2.8
Rib Depth	Ttd ^{vi}		mm	0.6	0.7	1	1	0.7	0.9	1.1
Tj ^{vi}		-	mm	1.7	2.1	2.5	3.5	3	3.6	4.5
Mechanical Properties										
			Minimum Average Roll Value (MARV)"							
	MD ^v	ASTM D6637 B	kN/m	16	20	30	40	20	30	40
ultimate lensile Strength	CD ^v	ASTM D6637 B	kN/m	16	20	30	40	20	3030L 66 66 4.4 5.6 2 0.9 3.6 XV)# 30 30 15 10 11 11 21 21 95% 550 3.9 51.3 200	40
Maximum Elongation (±6)	MD⁺	ASTM D6637 B	%	15	15	15	15	15	15	15
Maximum Elongation (±3)	CD ^v	ASTM D6637 B	%	10	10	10	10	10	10	10
Tensile Strength @ 2%	MD⁺	ASTM D6637 B	kN/m	5.6	7	11	14	7	11	14
Strain	CD ^v	ASTM D6637 B	kN/m	5.6	7.4	11	14	e 66 66 66 66 44 44 5.5 5.6 1.4 2 0.7 0.9 3 3.6 1.4 2 0.7 0.9 3 3.6 1.4 2 0.7 0.9 3 3.6 1.4 2 1.4 2 1.4 2 1.5 15 10 10 7 11 7.4 11 14 21 14.6 21 95% 95% 350 550 1.4 21 1.4 21 1.4 21 1.4 21 1.5 15 1.0 10 7 11 7.4 11 1.4 21 1.4 21 1.4 21 1.4 21 1.5 550 3.5 550 3.5 550 3.5 550 3.5 550 3.5 550 3.5 550 3.5 550 5.5 550 5	14	
Tensile Strength @ 5%	MD⁵	ASTM D6637 B	kN/m	11.2	14	21	28	14	21	28
Strain	CD ^v	ASTM D6637 B	kN/m	11.2	14.6	21	28	14.6	21	28
Junction Efficiency		ASTM D7737/D6637	%	95%	95%	95%	95%	95%	95%	95%
Radial Stiffness ^{iv}		ASTM D6637	kN/m	280	350	550	700	350	550	700
Standard Packaging		·								
Roll Width ^{vii}			m	3.9	3.9	3.9	3.9	3.9	3.9	3.9
Roll Length ^{vii}			m	100	51.3	51.3	30.8	51.3	51.3	30.8
Standard Roll Area ⁱⁱⁱ			m²	390	200	200	120	200	200	120

All the values are Nominal values

Values shown are minimum average roll values determinate in accordance with ASTMD4759.

[™] Other weight option available [™] At 2% strain under 360° radial loading.

Determined from tests in accordance with ISO10319

MD= Machine Direction,

CD= Cross Machine Direction

Refer to figure 1

These values are subject to ±1% variation

NOTES

A. These properties may change at the time of handling, storage and shipping

B. The values can be customized. C. The above values are subject to change as per discretion of the company

D. All mechanical properties are based on the manufacturer's laboratory test results at 21±1°C. E. Carbon black content ≥ 2%

F. ASTM D7737 performed at 10% per minute strain rate.

G. Expressed as a comparison of ASTM D7737 strength to ASTM D6637 strength of the same sample. H. Using specimens 2 ribs wide with ribs transverse to the specimen cut flush with the exterior edges of the ribs in the direction of the specimen

Disclaimer: Neither this brochure / leaflet nor its text, illustrations, drawings or any part thereof, may be reproduced, stored in a retrieval system, photocopied, recorded or transmitted in any form, whether electronic or otherwise, without the consent of Terre Armée. Descriptions and some illustrations contained in this catalogue are from computer generated imagery and actual product may differ wholly or partially. The images are only for static representation of the actual product. Terre Armée Management cannot be held liable for any inaccuracies of description or illustration and reserve the right to change specifications without notification.

www.terre-armee.com

Local Contact: